If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-20x+4=0
a = 15; b = -20; c = +4;
Δ = b2-4ac
Δ = -202-4·15·4
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{10}}{2*15}=\frac{20-4\sqrt{10}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{10}}{2*15}=\frac{20+4\sqrt{10}}{30} $
| x^2+18x-31=-9 | | Y=12x5x | | -63x^2+144x-144=0 | | 49=5m+14 | | (-7(9x^2-18x+18)+(18x-18))=0 | | 32=-5s+42 | | 5(3^(x+1))=85 | | 10=-h+38 | | 7(h-100)=-84 | | (5x15)=(2x5) | | m-47/7=4 | | |4w|+16=-12 | | 16+5n=21 | | 5x(x+1)=-30 | | 7(2p+10=14p+7 | | (-8(11x^2-22x+22)+(22x-22)))=0 | | p+18/6=9 | | 2(x+6)﹣8x=18 | | -88x^2+198x-198=0 | | 1+8z=25 | | X*7=y | | f/4+36=41 | | 2a-7/4+7=a/3 | | w/4+23=33 | | 42=3k-51 | | a/3a/4=14 | | x4-6x2=10 | | a/3=a/4=14 | | (-8(11x^2-22x+22)+(22x-22)=0 | | (4x+20)=(3x) | | 3x+294-x)=12 | | (-2(5x^2-10x+10)+(10x-10))=0 |